If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2+10h+16=0
a = 1; b = 10; c = +16;
Δ = b2-4ac
Δ = 102-4·1·16
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6}{2*1}=\frac{-16}{2} =-8 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6}{2*1}=\frac{-4}{2} =-2 $
| –5u+3=–8+6u | | x+58+52+77=180 | | 36-2x=2x-14 | | 2+5(x-6)=40 | | J^2-13j+42=0 | | 3x(3x+2)=50 | | 4x-9=-40 | | 52=8u | | 3x+4x+5x=60 | | x+x/4+90=180 | | 4x+10+x=360 | | 81+41+6x-8=180 | | x-15=86 | | 50x6=265 | | 15(15+10k)=51 (15+10k) | | 7*m=6 | | -14-3(x+10)=7(2x+4)+. | | 3(4d+1)-9d=6(2=d) | | 6(1-3m)=-8(-2+5)-4 | | −6x+9=−9 | | 4+y/6=-3/68 | | (7x-35)(x+1)=0 | | -20=1/4x | | 12y+28+15y-75-12y+122=180 | | x-(-7)=-61 | | 7(c-11)=-20 | | g+13=57 | | -6y-7/2=5/2y-5/3 | | 7(c-11)=-9 | | x-15=-86 | | 3p-600=600 | | (2x+45)+x=1 |